mpython.py源码

mpython.py源码下载

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
# labplus mPython library
# MIT license; Copyright (c) 2018 labplus
# V1.0 Zhang KaiHua(apple_eat@126.com)

# mpython buildin periphers drivers

# history:
# V1.1 add oled draw function,add buzz.freq().  by tangliufeng
# V1.2 add servo/ui class,by tangliufeng

from machine import I2C, PWM, Pin, ADC, TouchPad
from ssd1106 import SSD1106_I2C
import esp, math, time, network
import ustruct, array
from neopixel import NeoPixel
# from esp import dht_readinto
from time import sleep_ms, sleep_us, sleep
import framebuf 
import calibrate_img
from micropython import schedule,const

i2c = I2C(0, scl=Pin(Pin.P19), sda=Pin(Pin.P20), freq=400000)


class Font(object):
    def __init__(self, font_address=0x400000):
        self.font_address = font_address
        buffer = bytearray(18)
        esp.flash_read(self.font_address, buffer)
        self.header, \
            self.height, \
            self.width, \
            self.baseline, \
            self.x_height, \
            self.Y_height, \
            self.first_char,\
            self.last_char = ustruct.unpack('4sHHHHHHH', buffer)
        self.first_char_info_address = self.font_address + 18

    def GetCharacterData(self, c):
        uni = ord(c)
        # if uni not in range(self.first_char, self.last_char):
        #     return None
        if (uni < self.first_char or uni > self.last_char):
            return None
        char_info_address = self.first_char_info_address + \
            (uni - self.first_char) * 6
        buffer = bytearray(6)
        esp.flash_read(char_info_address, buffer)
        ptr_char_data, len = ustruct.unpack('IH', buffer)
        if (ptr_char_data) == 0 or (len == 0):
            return None
        buffer = bytearray(len)
        esp.flash_read(ptr_char_data + self.font_address, buffer)
        return buffer


class TextMode():
    normal = 1
    rev = 2
    trans = 3
    xor = 4


class OLED(SSD1106_I2C):
    """ 128x64 oled display """

    def __init__(self):
        super().__init__(128, 64, i2c)
        self.f = Font()
        if self.f is None:
            raise Exception('font load failed')

    def DispChar(self, s, x, y, mode=TextMode.normal, auto_return=False):
            row = 0
            str_width = 0
            if self.f is None:
                return
            for c in s:
                data = self.f.GetCharacterData(c)
                if data is None:
                    if auto_return is True:
                        x = x + self.f.width
                    else:
                        x = x + self.width
                    continue
                width, bytes_per_line = ustruct.unpack('HH', data[:4])
                # print('character [%d]: width = %d, bytes_per_line = %d' % (ord(c)
                # , width, bytes_per_line))
                if auto_return is True:
                    if x > self.width - width:
                        str_width += self.width - x
                        x = 0
                        row += 1
                        y += self.f.height
                        if y > (self.height - self.f.height)+0:
                            y, row = 0, 0
                for h in range(0, self.f.height):
                    w = 0
                    i = 0
                    while w < width:
                        mask = data[4 + h * bytes_per_line + i]
                        if (width - w) >= 8:
                            n = 8
                        else:
                            n = width - w
                        py = y + h
                        page = py >> 3
                        bit = 0x80 >> (py % 8)
                        for p in range(0, n):
                            px = x + w + p
                            c = 0
                            if (mask & 0x80) != 0:
                                if mode == TextMode.normal or \
                                        mode == TextMode.trans:
                                    c = 1
                                if mode == TextMode.rev:
                                    c = 0
                                if mode == TextMode.xor:
                                    c = self.buffer[page * (self.width if auto_return is True else 128) + px] & bit
                                    if c != 0:
                                        c = 0
                                    else:
                                        c = 1
                                super().pixel(px, py, c)
                            else:
                                if mode == TextMode.normal:
                                    c = 0
                                    super().pixel(px, py, c)
                                if mode == TextMode.rev:
                                    c = 1
                                    super().pixel(px, py, c)
                            mask = mask << 1
                        w = w + 8
                        i = i + 1
                x = x + width + 1
                str_width += width + 1
            return (str_width-1,(x-1, y))

    def DispChar_font(self, font, s, x, y, invert=False):
        """
        custom font display.Ref by , https://github.com/peterhinch/micropython-font-to-py
        :param font:  use font_to_py.py script convert to `py` from `ttf` or `otf`.
        """
        screen_width = self.width
        screen_height = self.height
        text_row = x
        text_col = y
        text_length = 0
        if font.hmap():
            font_map = framebuf.MONO_HMSB if font.reverse() else framebuf.MONO_HLSB
        else:
            raise ValueError('Font must be horizontally mapped.')
        for c in s:
            glyph, char_height, char_width = font.get_ch(c)
            buf = bytearray(glyph)
            if invert:
                for i, v in enumerate(buf):
                    buf[i] = 0xFF & ~ v
            fbc = framebuf.FrameBuffer(buf, char_width, char_height, font_map)
            if text_row + char_width > screen_width - 1:
                text_length += screen_width-text_row
                text_row = 0
                text_col += char_height
            if text_col + char_height > screen_height + 2:
                text_col = 0

            super().blit(fbc, text_row, text_col)
            text_row = text_row + char_width+1
            text_length += char_width+1
        return (text_length-1, (text_row-1, text_col))

# display
if 60 in i2c.scan():
    oled = OLED()
    display = oled

class Accelerometer():
    """MSA300"""
    # Range and resolustion
    RANGE_2G = const(0)
    RANGE_4G = const(1)
    RANGE_8G = const(2)
    RANGE_16G = const(3)
    RES_14_BIT = const(0)
    RES_12_BIT = const(1)
    RES_10_BIT = const(2)
    # Event
    TILT_LEFT = const(0)
    TILT_RIGHT = const(1)
    TILT_UP = const(2)
    TILT_DOWN = const(3)
    FACE_UP = const(4)
    FACE_DOWN = const(5)
    SINGLE_CLICK = const(6)
    DOUBLE_CLICK = const(7)
    FREEFALL = const(8)

    def __init__(self):
        self.addr = 38
        self.i2c = i2c
        self.set_resolution(Accelerometer.RES_10_BIT)
        self.set_range(Accelerometer.RANGE_2G)
        self._writeReg(0x12, 0x03)               # polarity of y,z axis,
        self._writeReg(0x11, 0)                  # set power mode = normal
        # interrupt
        self._writeReg(0x16, 0x70)      # int enabled: Orient | S_TAP | D_TAP 
        self._writeReg(0x17, 0x08)      # int enabled: Freefall
        self._writeReg(0x19, 0x71)      # int1 map to: Orient, S_TAP, D_TAP, Freefall
        self._writeReg(0x20, 0x02)      # int1 active level = 0, output = OD
        self._writeReg(0x21, 0x0C)      # int tempoary latched 25ms
        # freefall:
        #   single mode: |acc_x| < Threshold && |acc_y| < Threshold && |acc_z| < Threshold, at least time > Duration
        #   sum mode: |acc_x| + |acc_y| + |acc_z| < Threshold, at least time > Duration
        self._writeReg(0x22, 20)    # Freefall Duration:(n+1)*2ms, range from 2ms to 512ms
        self._writeReg(0x23, 48)    # Freefall Threshold: n*7.81mg
        self._writeReg(0x24, 0x01)  # Freefall mode = 0-singlemode;hysteresis = n*125mg
        # tap:
        self._writeReg(0x2A, 0x06)  # Tap duration:quit = 30ms, shock=50ms, time window for secent shock=500ms
        self._writeReg(0x2B, 0x0A)  # Tap threshold = 10*[62.5mg@2G | 125mg@4G | 250mg@8G | 500mg@16g]
        # Orient
        self._writeReg(0x2C, 0x18)  # Orient hysteresis= 1*62.5mg; 
                                    #        block mode = 10 z_axis blocking or slope in any axis > 0.2g;
                                    #        orient mode = 00-symetrical
        self._writeReg(0x2D, 8)     # Z-axis block
        # int pin irq register
        self.int = Pin(37, Pin.IN)
        self.int.irq(trigger=Pin.IRQ_FALLING, handler=self.irq)
        # event handler 
        self.event_tilt_up = None
        self.event_tilt_down = None
        self.event_tilt_left = None
        self.event_tilt_right = None
        self.event_face_up = None
        self.event_face_down = None
        self.event_single_click = None
        self.event_double_click = None
        self.event_freefall = None

    def irq(self, arg):
        reg_int = self._readReg(0x09)[0]
        reg_orent = self._readReg(0x0C)[0]
        # orient_int
        if (reg_int & 0x40):
            if ((reg_orent & 0x30) == 0x00 and self.event_tilt_left is not None):
                schedule(self.event_tilt_left, self.TILT_LEFT)
            if ((reg_orent & 0x30) == 0x10 and self.event_tilt_right is not None):
                schedule(self.event_tilt_right, self.TILT_RIGHT)
            if ((reg_orent & 0x30) == 0x20 and self.event_tilt_up is not None):
                schedule(self.event_tilt_up, self.TILT_UP)
            if ((reg_orent & 0x30) == 0x30 and self.event_tilt_down is not None):
                schedule(self.event_tilt_down, self.TILT_DOWN)
            if ((reg_orent & 0x40) == 0x00 and self.event_face_up):
                schedule(self.event_face_up, self.FACE_UP)
            if ((reg_orent & 0x40) == 0x40 and self.event_face_down):
                schedule(self.event_face_down, self.FACE_DOWN)
        # single tap
        if (reg_int & 0x20):
            if (self.event_single_click is not None):
                schedule(self.event_single_click, self.SINGLE_CLICK)
        # double tap
        if (reg_int & 0x10):
            if (self.event_double_click is not None):
                schedule(self.event_double_click, self.DOUBLE_CLICK)
        # freefall
        if (reg_int & 0x01):
            if (self.event_freefall is not None):
                schedule(self.event_freefall, self.FREEFALL)
        # print("acc sensor interrupt, because 0x%2x, orient = 0x%2x" % (reg_int, reg_orent))

    def _readReg(self, reg, nbytes=1):
        return self.i2c.readfrom_mem(self.addr, reg, nbytes)

    def _writeReg(self, reg, value):
        self.i2c.writeto_mem(self.addr, reg, value.to_bytes(1, 'little'))

    def set_resolution(self, resolution):
        format = self._readReg(0x0f, 1)
        format = format[0] & ~0xC
        format |= (resolution << 2)
        self._writeReg(0x0f, format)

    def set_range(self, range):
        self.range = range
        format = self._readReg(0x0f, 1)
        format = format[0] & ~0x3
        format |= range
        self._writeReg(0x0f, format)

    def set_offset(self, x=None, y=None, z=None):
        for i in (x, y, z):
            if i is not None:
                if i < -1 or i > 1:
                    raise ValueError("out of range,only offset 1 gravity")
        if x is not None:
            self._writeReg(0x39, int(round(x/0.0039)))
        elif y is not None:
            self._writeReg(0x38, int(round(y/0.0039)))
        elif z is not None:
            self._writeReg(0x3A, int(round(z/0.0039)))

    def get_x(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x02, 2)
                x = ustruct.unpack('h', buf)[0]
                return x / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def get_y(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x04, 2)
                y = ustruct.unpack('h', buf)[0]
                return y / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def get_z(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x06, 2)
                z = ustruct.unpack('h', buf)[0]
                return z / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def roll_pitch_angle(self):
        x, y, z = self.get_x(), self.get_y(), -self.get_z()
        # vector normalize
        mag = math.sqrt(x ** 2 + y ** 2+z ** 2)
        x /= mag
        y /= mag
        z /= mag
        roll = math.degrees(-math.asin(y))
        pitch = math.degrees(math.atan2(x, z))

        return roll, pitch



# 3 axis accelerometer
accelerometer = Accelerometer()

class Magnetic(object):
    """ MMC5983MA driver """

    def __init__(self):
        self.addr = 48
        self.i2c = i2c
        # 传量器裸数据,乘0.25后转化为mGS
        self.raw_x = 0.0
        self.raw_y = 0.0
        self.raw_z = 0.0
        # 校准后的偏移量, 基于裸数据
        self.cali_offset_x = 0.0 
        self.cali_offset_y = 0.0
        self.cali_offset_z = 0.0
        # 去皮偏移量,类似电子秤去皮功能,基于裸数据。
        self.peeling_x = 0.0
        self.peeling_y = 0.0
        self.peeling_z = 0.0
        self.is_peeling = 0

        self.i2c.writeto(self.addr, b'\x09\x20\xbd\x00', True)
        # self.i2c.writeto(self.addr, b'\x09\x21', True)

    def _set_offset(self):
        self.i2c.writeto(self.addr, b'\x09\x08', True)  #set

        self.i2c.writeto(self.addr, b'\x09\x01', True)
        while True:
            self.i2c.writeto(self.addr, b'\x08', False)
            buf = self.i2c.readfrom(self.addr, 1)
            status = ustruct.unpack('B', buf)[0]
            if(status & 0x01):
                break
        self.i2c.writeto(self.addr, b'\x00', False)
        buf = self.i2c.readfrom(self.addr, 6)
        data = ustruct.unpack('>3H', buf)

        self.i2c.writeto(self.addr, b'\x09\x10', True)  #reset

        self.i2c.writeto(self.addr, b'\x09\x01', True)
        while True:
            self.i2c.writeto(self.addr, b'\x08', False)
            buf = self.i2c.readfrom(self.addr, 1)
            status = ustruct.unpack('B', buf)[0]
            if(status & 0x01):
                break
        self.i2c.writeto(self.addr, b'\x00', False)
        buf = self.i2c.readfrom(self.addr, 6)
        data1 = ustruct.unpack('>3H', buf)

        self.x_offset = (data[0] + data1[0])/2
        self.y_offset = (data[1] + data1[1])/2
        self.z_offset = (data[2] + data1[2])/2
        # print(self.x_offset)
        # print(self.y_offset)
        # print(self.z_offset)

    def _get_raw(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, b'\x09\x08', True)  #set

                self.i2c.writeto(self.addr, b'\x09\x01', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x01):
                        break
                self.i2c.writeto(self.addr, b'\x00', False)
                buf = self.i2c.readfrom(self.addr, 6)
                data = ustruct.unpack('>3H', buf)

                self.i2c.writeto(self.addr, b'\x09\x10', True)  #reset

                self.i2c.writeto(self.addr, b'\x09\x01', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x01):
                        break
                self.i2c.writeto(self.addr, b'\x00', False)
                buf = self.i2c.readfrom(self.addr, 6)
                data1 = ustruct.unpack('>3H', buf)

                self.raw_x = -((data[0] - data1[0])/2)
                self.raw_y = -((data[1] - data1[1])/2)
                self.raw_z = -((data[2] - data1[2])/2)
                # print(str(self.x) + "   " + str(self.y) + "  " + str(self.z))
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")     

    def peeling(self):
        self._get_raw()
        self.peeling_x = self.raw_x
        self.peeling_y = self.raw_y
        self.peeling_z = self.raw_z
        self.is_peeling = 1

    def clear_peeling(self):
        self.peeling_x = 0.0
        self.peeling_y = 0.0
        self.peeling_z = 0.0
        self.is_peeling = 0

    def get_x(self):
        self._get_raw()
        return self.raw_x * 0.25

    def get_y(self):
        self._get_raw()
        return self.raw_y * 0.25

    def get_z(self):
        self._get_raw()
        return self.raw_z * 0.25 

    def get_field_strength(self):
        self._get_raw()
        if self.is_peeling == 1:
            return (math.sqrt((self.raw_x - self.peeling_x)*(self.raw_x - self.peeling_x) + (self.raw_y - self.peeling_y)*(self.raw_y - self.peeling_y) + (self.raw_z - self.peeling_z)*(self.raw_z - self.peeling_z)))*0.25
        return (math.sqrt(self.raw_x * self.raw_x + self.raw_y * self.raw_y + self.raw_z * self.raw_z))*0.25

    def calibrate(self):
        oled.fill(0)
        oled.DispChar("步骤1:", 0,0,1)
        oled.DispChar("如图",0,26,1)
        oled.DispChar("转几周",0,43,1)
        oled.bitmap(64,0,calibrate_img.rotate,64,64,1)
        oled.show()
        self._get_raw()
        min_x = max_x = self.raw_x
        min_y = max_y = self.raw_y
        min_z = max_z = self.raw_z
        ticks_start = time.ticks_ms()
        while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) :
            self._get_raw()
            min_x = min(self.raw_x, min_x)
            min_y = min(self.raw_y, min_y)
            max_x = max(self.raw_x, max_x)
            max_y = max(self.raw_y, max_y)
            time.sleep_ms(100)
        self.cali_offset_x = (max_x + min_x) / 2
        self.cali_offset_y = (max_y + min_y) / 2
        print('cali_offset_x: ' + str(self.cali_offset_x) + '  cali_offset_y: ' + str(self.cali_offset_y))
        oled.fill(0)
        oled.DispChar("步骤2:", 85,0,1)
        oled.DispChar("如图",85,26,1)
        oled.DispChar("转几周",85,43,1)
        oled.bitmap(0,0,calibrate_img.rotate1,64,64,1)
        oled.show()
        ticks_start = time.ticks_ms()
        while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) :
            self._get_raw()
            min_z = min(self.raw_z, min_z)
            # min_y = min(self.raw_y, min_y)
            max_z = max(self.raw_z, max_z)
            # max_y = max(self.raw_y, max_y)
            time.sleep_ms(100)
        self.cali_offset_z = (max_z + min_z) / 2
        # self.cali_offset_y = (max_y + min_y) / 2
        print('cali_offset_z: ' + str(self.cali_offset_z))
        # print('cali_offset_y: ' + str(self.cali_offset_y))

        oled.fill(0)
        oled.DispChar("校准完成", 40,24,1)
        oled.show()
        oled.fill(0)

    def get_heading(self):
        self._get_raw()

        # if (accelerometer):
        #     # use accelerometer get inclination   
        #     x = accelerometer.get_x()
        #     y = accelerometer.get_y()
        #     z = accelerometer.get_z()

        #     phi = math.atan2(x, -z)
        #     theta = math.atan2(y, (x*math.sin(phi) - z*math.cos(phi)))
        #     sinPhi = math.sin(phi)
        #     cosPhi = math.cos(phi)
        #     sinTheta = math.sin(theta)
        #     cosTheta = math.cos(theta)
        #     heading = (math.atan2(x*cosTheta + y*sinTheta*sinPhi + z*sinTheta*cosPhi, z*sinPhi - y*cosPhi)) * (180 / 3.14159265) + 180
        #     return heading

        temp_x = self.raw_x - self.cali_offset_x
        temp_y = self.raw_y - self.cali_offset_y
        temp_z = self.raw_z - self.cali_offset_z
        heading = math.atan2(temp_y, -temp_x) * (180 / 3.14159265) + 180
        return heading

    def _get_temperature(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, b'\x09\x02', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x02):
                        break
                self.i2c.writeto(self.addr, b'\x07', False)
                buf = self.i2c.readfrom(self.addr, 1)
                temp = (ustruct.unpack('B', buf)[0])*0.8 -75
                # print(data)
                return temp
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")   

    def _get_id(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, bytearray([0x2f]), False)
                buf = self.i2c.readfrom(self.addr, 1, True)
                print(buf)
                id = ustruct.unpack('B', buf)[0]
                return id
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")    

# Magnetic
if 48 in i2c.scan():
    magnetic = Magnetic()

class BME280(object):
    def __init__(self):
        self.addr = 119
        # The “ctrl_hum” register sets the humidity data acquisition options of the device
        # 0x01 = [2:0]oversampling ×1
        i2c.writeto(self.addr, b'\xF2\x01')
        # The “ctrl_meas” register sets the pressure and temperature data acquisition options of the device.
        # The register needs to be written after changing “ctrl_hum” for the changes to become effective.
        # 0x27 = [7:5]Pressure oversampling ×1 | [4:2]Temperature oversampling ×4 | [1:0]Normal mode
        i2c.writeto(self.addr, b'\xF4\x27')
        # The “config” register sets the rate, filter and interface options of the device. Writes to the “config”
        # register in normal mode may be ignored. In sleep mode writes are not ignored.
        i2c.writeto(self.addr, b'\xF5\x00')

        i2c.writeto(self.addr, b'\x88', False)
        bytes = i2c.readfrom(self.addr, 6)
        self.dig_T = ustruct.unpack('Hhh', bytes)

        i2c.writeto(self.addr, b'\x8E', False)
        bytes = i2c.readfrom(self.addr, 18)
        self.dig_P = ustruct.unpack('Hhhhhhhhh', bytes)

        i2c.writeto(self.addr, b'\xA1', False)
        self.dig_H = array.array('h', [0, 0, 0, 0, 0, 0])
        self.dig_H[0] = i2c.readfrom(self.addr, 1)[0]
        i2c.writeto(self.addr, b'\xE1', False)
        buff = i2c.readfrom(self.addr, 7)
        self.dig_H[1] = ustruct.unpack('h', buff[0:2])[0]
        self.dig_H[2] = buff[2]
        self.dig_H[3] = (buff[3] << 4) | (buff[4] & 0x0F)
        self.dig_H[4] = (buff[5] << 4) | (buff[4] >> 4 & 0x0F)
        self.dig_H[5] = buff[6]

    def temperature(self):
        retry = 0
        if (retry < 5):
            try:
                i2c.writeto(self.addr, b'\xFA', False)
                buff = i2c.readfrom(self.addr, 3)
                T = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F)
                c1 = (T / 16384.0 - self.dig_T[0] / 1024.0) * self.dig_T[1]
                c2 = ((T / 131072.0 - self.dig_T[0] / 8192.0) * (T / 131072.0 - self.dig_T[0] / 8192.0)) * self.dig_T[2]
                self.tFine = c1 + c2
                return self.tFine / 5120.0
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def pressure(self):
        retry = 0
        if (retry < 5):
            try:
                self.temperature()
                i2c.writeto(self.addr, b'\xF7', False)
                buff = i2c.readfrom(self.addr, 3)
                P = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F)
                c1 = self.tFine / 2.0 - 64000.0
                c2 = c1 * c1 * self.dig_P[5] / 32768.0
                c2 = c2 + c1 * self.dig_P[4] * 2.0
                c2 = c2 / 4.0 + self.dig_P[3] * 65536.0
                c1 = (self.dig_P[2] * c1 * c1 / 524288.0 + self.dig_P[1] * c1) / 524288.0
                c1 = (1.0 + c1 / 32768.0) * self.dig_P[0]
                if c1 == 0.0:
                    return 0
                p = 1048576.0 - P
                p = (p - c2 / 4096.0) * 6250.0 / c1
                c1 = self.dig_P[8] * p * p / 2147483648.0
                c2 = p * self.dig_P[7] / 32768.0
                p = p + (c1 + c2 + self.dig_P[6]) / 16.0
                return p
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def humidity(self):
        retry = 0
        if (retry < 5):
            try:
                self.temperature()
                i2c.writeto(self.addr, b'\xFD', False)
                buff = i2c.readfrom(self.addr, 2)
                H = buff[0] << 8 | buff[1]
                h = self.tFine - 76800.0
                h = (H - (self.dig_H[3] * 64.0 + self.dig_H[4] / 16384.0 * h)) * \
                    (self.dig_H[1] / 65536.0 * (1.0 + self.dig_H[5] / 67108864.0 * h * \
                    (1.0 + self.dig_H[2] / 67108864.0 * h)))
                h = h * (1.0 - self.dig_H[0] * h / 524288.0)
                if h > 100.0:
                    return 100.0
                elif h < 0.0:
                    return 0.0
                else:
                    return h
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

# bm280
if 119 in i2c.scan():
    bme280 = BME280()

class PinMode(object):
    IN = 1
    OUT = 2
    PWM = 3
    ANALOG = 4
    OUT_DRAIN = 5


pins_remap_esp32 = (33, 32, 35, 34, 39, 0, 16, 17, 26, 25, 36, 2, -1, 18, 19, 21, 5, -1, -1, 22, 23, -1, -1, 27, 14, 12,
                    13, 15, 4)


class MPythonPin():
    def __init__(self, pin, mode=PinMode.IN, pull=None):
        if mode not in [PinMode.IN, PinMode.OUT, PinMode.PWM, PinMode.ANALOG, PinMode.OUT_DRAIN]:
            raise TypeError("mode must be 'IN, OUT, PWM, ANALOG,OUT_DRAIN'")
        if pin == 4:
            raise TypeError("P4 is used for light sensor")
        if pin == 10:
            raise TypeError("P10 is used for sound sensor")
        try:
            self.id = pins_remap_esp32[pin]
        except IndexError:
            raise IndexError("Out of Pin range")
        if mode == PinMode.IN:
            # if pin in [3]:
            #     raise TypeError('IN not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.IN, pull)
        if mode == PinMode.OUT:
            if pin in [2, 3]:
                raise TypeError('OUT not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.OUT, pull)
        if mode == PinMode.OUT_DRAIN:
            if pin in [2, 3]:
                raise TypeError('OUT_DRAIN not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.OPEN_DRAIN, pull)
        if mode == PinMode.PWM:
            if pin not in [0, 1, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 19, 20, 23, 24, 25, 26, 27, 28]:
                raise TypeError('PWM not supported on P%d' % pin)
            self.pwm = PWM(Pin(self.id), duty=0)
        if mode == PinMode.ANALOG:
            if pin not in [0, 1, 2, 3, 4, 10]:
                raise TypeError('ANALOG not supported on P%d' % pin)
            self.adc = ADC(Pin(self.id))
            self.adc.atten(ADC.ATTN_11DB)
        self.mode = mode

    def irq(self, handler=None, trigger=Pin.IRQ_RISING):
        if not self.mode == PinMode.IN:
            raise TypeError('the pin is not in IN mode')
        return self.Pin.irq(handler, trigger)

    def read_digital(self):
        if not self.mode == PinMode.IN:
            raise TypeError('the pin is not in IN mode')
        return self.Pin.value()

    def write_digital(self, value):
        if self.mode not in [PinMode.OUT, PinMode.OUT_DRAIN]:
            raise TypeError('the pin is not in OUT or OUT_DRAIN mode')
        self.Pin.value(value)

    def read_analog(self):
        if not self.mode == PinMode.ANALOG:
            raise TypeError('the pin is not in ANALOG mode')
        return self.adc.read()
        

    def write_analog(self, duty, freq=1000):
        if not self.mode == PinMode.PWM:
            raise TypeError('the pin is not in PWM mode')
        self.pwm.freq(freq)
        self.pwm.duty(duty)


'''
# to be test
class LightSensor(ADC):
    
    def __init__(self):
        super().__init__(Pin(pins_remap_esp32[4]))
        # super().atten(ADC.ATTN_11DB)
    
    def value(self):
        # lux * k * Rc = N * 3.9/ 4096
        # k = 0.0011mA/Lux
        # lux = N * 3.9/ 4096 / Rc / k
        return super().read() * 1.1 / 4095 / 6.81 / 0.011
    
'''


class wifi:
    def __init__(self):
        self.sta = network.WLAN(network.STA_IF)
        self.ap = network.WLAN(network.AP_IF)

    def connectWiFi(self, ssid, passwd, timeout=10):
        if self.sta.isconnected():
            self.sta.disconnect()
        self.sta.active(True)
        list = self.sta.scan()
        for i, wifi_info in enumerate(list):
            try:
                if wifi_info[0].decode() == ssid:
                    self.sta.connect(ssid, passwd)
                    wifi_dbm = wifi_info[3]
                    break
            except UnicodeError:
                self.sta.connect(ssid, passwd)
                wifi_dbm = '?'
                break
            if i == len(list) - 1:
                raise OSError("SSID invalid / failed to scan this wifi")
        start = time.time()
        print("Connection WiFi", end="")
        while (self.sta.ifconfig()[0] == '0.0.0.0'):
            if time.ticks_diff(time.time(), start) > timeout:
                print("")
                raise OSError("Timeout!,check your wifi password and keep your network unblocked")
            print(".", end="")
            time.sleep_ms(500)
        print("")
        print('WiFi(%s,%sdBm) Connection Successful, Config:%s' % (ssid, str(wifi_dbm), str(self.sta.ifconfig())))

    def disconnectWiFi(self):
        if self.sta.isconnected():
            self.sta.disconnect()
        self.sta.active(False)
        print('disconnect WiFi...')

    def enable_APWiFi(self, essid, password=b'',channel=10):
        self.ap.active(True)
        if password:
            authmode=4
        else:
            authmode=0
        self.ap.config(essid=essid,password=password,authmode=authmode, channel=channel)

    def disable_APWiFi(self):
        self.ap.active(False)
        print('disable AP WiFi...')


# 3 rgb leds
rgb = NeoPixel(Pin(17, Pin.OUT), 3, 3, 1, brightness=0.3)
rgb.write()

# light sensor
light = ADC(Pin(39))
light.atten(light.ATTN_11DB)

# sound sensor
sound = ADC(Pin(36))
sound.atten(sound.ATTN_11DB)

# buttons
class Button:
    def __init__(self, pin_num, reverse=False):
        self.__reverse = reverse
        (self.__press_level, self.__release_level) = (0, 1) if not self.__reverse else (1, 0)
        self.__pin = Pin(pin_num, Pin.IN, pull=Pin.PULL_UP)
        self.__pin.irq(trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, handler=self.__irq_handler)
        # self.__user_irq = None
        self.event_pressed = None
        self.event_released = None
        self.__pressed_count = 0
        self.__was_pressed = False
        # print("level: pressed is {}, released is {}." .format(self.__press_level, self.__release_level))
    

    def __irq_handler(self, pin):
        irq_falling = True if pin.value() == self.__press_level else False
        # debounce
        time.sleep_ms(10)
        if self.__pin.value() == (self.__press_level if irq_falling else self.__release_level):
            # new event handler
            # pressed event
            if irq_falling:
                if self.event_pressed is not None:
                    schedule(self.event_pressed, self.__pin)
                # key status
                self.__was_pressed = True
                if (self.__pressed_count < 100):
                    self.__pressed_count = self.__pressed_count + 1
            # release event
            else:
                if self.event_released is not None:
                    schedule(self.event_released, self.__pin)

                
    def is_pressed(self):
        if self.__pin.value() == self.__press_level:
            return True
        else:
            return False

    def was_pressed(self):
        r = self.__was_pressed
        self.__was_pressed = False
        return r

    def get_presses(self):
        r = self.__pressed_count
        self.__pressed_count = 0
        return r

    def value(self):
        return self.__pin.value()

    def irq(self, *args, **kws):
        self.__pin.irq(*args, **kws)



class Touch:

    def __init__(self, pin):
        self.__touch_pad = TouchPad(pin)
        self.__touch_pad.irq(self.__irq_handler)
        self.event_pressed = None
        self.event_released = None
        self.__pressed_count = 0
        self.__was_pressed = False
        self.__value = 0

    def __irq_handler(self, value):
        # when pressed
        if value == 1:
            if self.event_pressed is not None:
                self.event_pressed(value)
            self.__was_pressed = True
            self.__value = 1
            if (self.__pressed_count < 100):
                self.__pressed_count = self.__pressed_count + 1
        # when released
        else:
            self.__value = 0
            if self.event_released is not None:
                self.event_released(value)
            
    def config(self, threshold):
        self.__touch_pad.config(threshold)

    def is_pressed(self):
        if self.__value:
            return True
        else:
            return False

    def was_pressed(self):
        r = self.__was_pressed
        self.__was_pressed = False
        return r

    def get_presses(self):
        r = self.__pressed_count
        self.__pressed_count = 0
        return r

    def read(self):
        return self.__touch_pad.read()


# button_a = Pin(0, Pin.IN, Pin.PULL_UP)
# button_b = Pin(2, Pin.IN, Pin.PULL_UP)
button_a = Button(0)
button_b = Button(2)


# touchpad
touchpad_p = touchPad_P = Touch(Pin(27))
touchpad_y = touchPad_Y = Touch(Pin(14))
touchpad_t = touchPad_T = Touch(Pin(12))
touchpad_h = touchPad_H = Touch(Pin(13))
touchpad_o = touchPad_O = Touch(Pin(15))
touchpad_n = touchPad_N = Touch(Pin(4))

from gui import *


def numberMap(inputNum, bMin, bMax, cMin, cMax):
    outputNum = 0
    outputNum = ((cMax - cMin) / (bMax - bMin)) * (inputNum - bMin) + cMin
    return outputNum