mpython.py源码

mpython.py源码下载

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# labplus mPython library
# MIT license; Copyright (c) 2018 labplus
# V1.0 Zhang KaiHua(apple_eat@126.com)

# mpython buildin periphers drivers

# history:
# V1.1 add oled draw function,add buzz.freq().  by tangliufeng
# V1.2 add servo/ui class,by tangliufeng

from machine import I2C, PWM, Pin, ADC, TouchPad
from ssd1106 import SSD1106_I2C
import esp, math, time, network
import ustruct, array
from neopixel import NeoPixel
from esp import dht_readinto
from time import sleep_ms, sleep_us, sleep
from framebuf import FrameBuffer
import calibrate_img

i2c = I2C(scl=Pin(Pin.P19), sda=Pin(Pin.P20), freq=400000)


class Font(object):
    def __init__(self, font_address=0x400000):
        self.font_address = font_address
        buffer = bytearray(18)
        esp.flash_read(self.font_address, buffer)
        self.header, \
            self.height, \
            self.width, \
            self.baseline, \
            self.x_height, \
            self.Y_height, \
            self.first_char,\
            self.last_char = ustruct.unpack('4sHHHHHHH', buffer)
        self.first_char_info_address = self.font_address + 18

    def GetCharacterData(self, c):
        uni = ord(c)
        # if uni not in range(self.first_char, self.last_char):
        #     return None
        if (uni < self.first_char or uni > self.last_char):
            return None
        char_info_address = self.first_char_info_address + \
            (uni - self.first_char) * 6
        buffer = bytearray(6)
        esp.flash_read(char_info_address, buffer)
        ptr_char_data, len = ustruct.unpack('IH', buffer)
        if (ptr_char_data) == 0 or (len == 0):
            return None
        buffer = bytearray(len)
        esp.flash_read(ptr_char_data + self.font_address, buffer)
        return buffer


class TextMode():
    normal = 1
    rev = 2
    trans = 3
    xor = 4


class OLED(SSD1106_I2C):
    """ 128x64 oled display """

    def __init__(self):
        super().__init__(128, 64, i2c)
        self.f = Font()
        if self.f is None:
            raise Exception('font load failed')

    def DispChar(self, s, x, y, mode=TextMode.normal):
            row = 0
            str_width = 0
            if self.f is None:
                return
            for c in s:
                data = self.f.GetCharacterData(c)
                if data is None:
                    x = x + self.f.width
                    continue
                width, bytes_per_line = ustruct.unpack('HH', data[:4])
                # print('character [%d]: width = %d, bytes_per_line = %d' % (ord(c)
                # , width, bytes_per_line))
                if x > self.width - width:
                    str_width +=self.width -x
                    x = 0
                    row += 1
                    y += self.f.height
                    if y > (self.height - self.f.height)+0: y, row = 0, 0
                for h in range(0, self.f.height):
                    w = 0
                    i = 0
                    while w < width:
                        mask = data[4 + h * bytes_per_line + i]
                        if (width - w) >= 8:
                            n = 8
                        else:
                            n = width - w
                        py = y + h
                        page = py >> 3
                        bit = 0x80 >> (py % 8)
                        for p in range(0, n):
                            px = x + w + p
                            c = 0
                            if (mask & 0x80) != 0:
                                if mode == TextMode.normal or \
                                        mode == TextMode.trans:
                                    c = 1
                                if mode == TextMode.rev:
                                    c = 0
                                if mode == TextMode.xor:
                                    c = self.buffer[page *
                                                    self.width + px] & bit
                                    if c != 0:
                                        c = 0
                                    else:
                                        c = 1
                                super().pixel(px, py, c)
                            else:
                                if mode == TextMode.normal:
                                    c = 0
                                    super().pixel(px, py, c)
                                if mode == TextMode.rev:
                                    c = 1
                                    super().pixel(px, py, c)
                            mask = mask << 1
                        w = w + 8
                        i = i + 1
                x = x + width + 1
                str_width += width + 1
            return (str_width-1,(x-1, y))

# display
if 60 in i2c.scan():
    oled = OLED()
    display = oled

class Accelerometer():
    """  """
    RANGE_2G = 0
    RANGE_4G = 1
    RANGE_8G = 2
    RANGE_16G = 3
    RES_14_BIT = 0
    RES_12_BIT = 1
    RES_10_BIT = 2

    def __init__(self):
        self.addr = 38
        self.i2c = i2c
        self.set_resolustion(Accelerometer.RES_10_BIT)
        self.set_range(Accelerometer.RANGE_2G)
        self._writeReg(0x11,0)                  # set power mode = normal

    def _readReg(self, reg, nbytes=1):
        return self.i2c.readfrom_mem(self.addr, reg, nbytes)

    def _writeReg(self, reg, value):
        self.i2c.writeto_mem(self.addr, reg, value.to_bytes(1, 'little'))

    def set_resolustion(self,resolution):
        format = self._readReg(0x0f,1)
        format = format[0] & ~0xC
        format |= (resolution<<2)
        self._writeReg(0x0f,format)
 
    def set_range(self, range):
        self.range = range
        format = self._readReg(0x0f,1)
        format = format[0] & ~0x3
        format |= range
        self._writeReg(0x0f,format)

    def set_offset(self, x=None, y=None, z=None):
        for i in (x, y, z):
            if i != None:
                if i < -1 or i > 1:
                    raise ValueError("out of range,only offset 1 gravity")
        if x != None:
            self._writeReg(0x39, int(round(x/0.0039)))
        elif y != None:
            self._writeReg(0x38, int(round(y/0.0039)))
        elif z != None:
            self._writeReg(0x3A, int(round(z/0.0039)))

    def get_x(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x02, 2)
                x = ustruct.unpack('h', buf)[0]
                return x / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def get_y(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x04, 2)
                y = ustruct.unpack('h', buf)[0]
                return y / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def get_z(self):
        retry = 0
        if (retry < 5):
            try:
                buf = self._readReg(0x06, 2)
                z = ustruct.unpack('h', buf)[0]
                return z / 4 / 4096 * 2**self.range
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

# 3 axis accelerometer
accelerometer = Accelerometer()

class Magnetic(object):
    """ MMC5983MA driver """

    def __init__(self):
        self.addr = 48
        self.i2c = i2c
        # 传量器裸数据,乘0.25后转化为mGS
        self.raw_x = 0.0
        self.raw_y = 0.0
        self.raw_z = 0.0
        # 校准后的偏移量, 基于裸数据
        self.cali_offset_x = 0.0 
        self.cali_offset_y = 0.0
        self.cali_offset_z = 0.0
        # 去皮偏移量,类似电子秤去皮功能,基于裸数据。
        self.peeling_x = 0.0
        self.peeling_y = 0.0
        self.peeling_z = 0.0
        self.is_peeling = 0

        self.i2c.writeto(self.addr, b'\x09\x20\xbd\x00', True)
        # self.i2c.writeto(self.addr, b'\x09\x21', True)

    def _set_offset(self):
        self.i2c.writeto(self.addr, b'\x09\x08', True)  #set

        self.i2c.writeto(self.addr, b'\x09\x01', True)
        while True:
            self.i2c.writeto(self.addr, b'\x08', False)
            buf = self.i2c.readfrom(self.addr, 1)
            status = ustruct.unpack('B', buf)[0]
            if(status & 0x01):
                break
        self.i2c.writeto(self.addr, b'\x00', False)
        buf = self.i2c.readfrom(self.addr, 6)
        data = ustruct.unpack('>3H', buf)

        self.i2c.writeto(self.addr, b'\x09\x10', True)  #reset

        self.i2c.writeto(self.addr, b'\x09\x01', True)
        while True:
            self.i2c.writeto(self.addr, b'\x08', False)
            buf = self.i2c.readfrom(self.addr, 1)
            status = ustruct.unpack('B', buf)[0]
            if(status & 0x01):
                break
        self.i2c.writeto(self.addr, b'\x00', False)
        buf = self.i2c.readfrom(self.addr, 6)
        data1 = ustruct.unpack('>3H', buf)

        self.x_offset = (data[0] + data1[0])/2
        self.y_offset = (data[1] + data1[1])/2
        self.z_offset = (data[2] + data1[2])/2
        # print(self.x_offset)
        # print(self.y_offset)
        # print(self.z_offset)

    def _get_raw(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, b'\x09\x08', True)  #set

                self.i2c.writeto(self.addr, b'\x09\x01', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x01):
                        break
                self.i2c.writeto(self.addr, b'\x00', False)
                buf = self.i2c.readfrom(self.addr, 6)
                data = ustruct.unpack('>3H', buf)

                self.i2c.writeto(self.addr, b'\x09\x10', True)  #reset

                self.i2c.writeto(self.addr, b'\x09\x01', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x01):
                        break
                self.i2c.writeto(self.addr, b'\x00', False)
                buf = self.i2c.readfrom(self.addr, 6)
                data1 = ustruct.unpack('>3H', buf)

                self.raw_x = -((data[0] - data1[0])/2)
                self.raw_y = -((data[1] - data1[1])/2)
                self.raw_z = -((data[2] - data1[2])/2)
                # print(str(self.x) + "   " + str(self.y) + "  " + str(self.z))
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")     

    def peeling(self):
        self._get_raw()
        self.peeling_x = self.raw_x
        self.peeling_y = self.raw_y
        self.peeling_z = self.raw_z
        self.is_peeling = 1

    def clear_peeling(self):
        self.peeling_x = 0.0
        self.peeling_y = 0.0
        self.peeling_z = 0.0
        self.is_peeling = 0

    def get_x(self):
        self._get_raw()
        return self.raw_x * 0.25

    def get_y(self):
        self._get_raw()
        return self.raw_y * 0.25

    def get_z(self):
        self._get_raw()
        return self.raw_z * 0.25 

    def get_field_strength(self):
        self._get_raw()
        if self.is_peeling == 1:
            return (math.sqrt((self.raw_x - self.peeling_x)*(self.raw_x - self.peeling_x) + (self.raw_y - self.peeling_y)*(self.raw_y - self.peeling_y) + (self.raw_z - self.peeling_z)*(self.raw_z - self.peeling_z)))*0.25
        return (math.sqrt(self.raw_x * self.raw_x + self.raw_y * self.raw_y + self.raw_z * self.raw_z))*0.25

    def calibrate(self):
        oled.fill(0)
        oled.DispChar("步骤1:", 0,0,1)
        oled.DispChar("如图",0,26,1)
        oled.DispChar("转几周",0,43,1)
        oled.bitmap(64,0,calibrate_img.rotate,64,64,1)
        oled.show()
        self._get_raw()
        min_x = max_x = self.raw_x
        min_y = max_y = self.raw_y
        min_z = max_z = self.raw_z
        ticks_start = time.ticks_ms()
        while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) :
            self._get_raw()
            min_x = min(self.raw_x, min_x)
            min_y = min(self.raw_y, min_y)
            max_x = max(self.raw_x, max_x)
            max_y = max(self.raw_y, max_y)
            time.sleep_ms(100)
        self.cali_offset_x = (max_x + min_x) / 2
        self.cali_offset_y = (max_y + min_y) / 2
        print('cali_offset_x: ' + str(self.cali_offset_x) + '  cali_offset_y: ' + str(self.cali_offset_y))
        oled.fill(0)
        oled.DispChar("步骤2:", 85,0,1)
        oled.DispChar("如图",85,26,1)
        oled.DispChar("转几周",85,43,1)
        oled.bitmap(0,0,calibrate_img.rotate1,64,64,1)
        oled.show()
        ticks_start = time.ticks_ms()
        while (time.ticks_diff(time.ticks_ms(), ticks_start) < 15000) :
            self._get_raw()
            min_z = min(self.raw_z, min_z)
            # min_y = min(self.raw_y, min_y)
            max_z = max(self.raw_z, max_z)
            # max_y = max(self.raw_y, max_y)
            time.sleep_ms(100)
        self.cali_offset_z = (max_z + min_z) / 2
        # self.cali_offset_y = (max_y + min_y) / 2
        print('cali_offset_z: ' + str(self.cali_offset_z))
        # print('cali_offset_y: ' + str(self.cali_offset_y))

        oled.fill(0)
        oled.DispChar("校准完成。", 40,24,1)
        oled.show()

    def get_heading(self):
        self._get_raw()

        # if (accelerometer):
        #     # use accelerometer get inclination   
        #     x = accelerometer.get_x()
        #     y = accelerometer.get_y()
        #     z = accelerometer.get_z()

        #     phi = math.atan2(x, -z)
        #     theta = math.atan2(y, (x*math.sin(phi) - z*math.cos(phi)))
        #     sinPhi = math.sin(phi)
        #     cosPhi = math.cos(phi)
        #     sinTheta = math.sin(theta)
        #     cosTheta = math.cos(theta)
        #     heading = (math.atan2(x*cosTheta + y*sinTheta*sinPhi + z*sinTheta*cosPhi, z*sinPhi - y*cosPhi)) * (180 / 3.14159265) + 180
        #     return heading

        temp_x = self.raw_x - self.cali_offset_x
        temp_y = self.raw_y - self.cali_offset_y
        temp_z = self.raw_z - self.cali_offset_z
        heading = math.atan2(temp_y, -temp_x) * (180 / 3.14159265) + 180
        return heading

    def _get_temperature(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, b'\x09\x02', True)
                while True:
                    self.i2c.writeto(self.addr, b'\x08', False)
                    buf = self.i2c.readfrom(self.addr, 1)
                    status = ustruct.unpack('B', buf)[0]
                    if(status & 0x02):
                        break
                self.i2c.writeto(self.addr, b'\x07', False)
                buf = self.i2c.readfrom(self.addr, 1)
                temp = (ustruct.unpack('B', buf)[0])*0.8 -75
                # print(data)
                return temp
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")   

    def _get_id(self):
        retry = 0
        if (retry < 5):
            try:
                self.i2c.writeto(self.addr, bytearray([0x2f]), False)
                buf = self.i2c.readfrom(self.addr, 1, True)
                print(buf)
                id = ustruct.unpack('B', buf)[0]
                return id
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")    

# Magnetic
if 48 in i2c.scan():
    magnetic = Magnetic()

class BME280(object):
    def __init__(self):
        self.addr = 119
        # The “ctrl_hum” register sets the humidity data acquisition options of the device
        # 0x01 = [2:0]oversampling ×1
        i2c.writeto(self.addr, b'\xF2\x01')
        # The “ctrl_meas” register sets the pressure and temperature data acquisition options of the device.
        # The register needs to be written after changing “ctrl_hum” for the changes to become effective.
        # 0x27 = [7:5]Pressure oversampling ×1 | [4:2]Temperature oversampling ×4 | [1:0]Normal mode
        i2c.writeto(self.addr, b'\xF4\x27')
        # The “config” register sets the rate, filter and interface options of the device. Writes to the “config”
        # register in normal mode may be ignored. In sleep mode writes are not ignored.
        i2c.writeto(self.addr, b'\xF5\x00')

        i2c.writeto(self.addr, b'\x88', False)
        bytes = i2c.readfrom(self.addr, 6)
        self.dig_T = ustruct.unpack('Hhh', bytes)

        i2c.writeto(self.addr, b'\x8E', False)
        bytes = i2c.readfrom(self.addr, 18)
        self.dig_P = ustruct.unpack('Hhhhhhhhh', bytes)

        i2c.writeto(self.addr, b'\xA1', False)
        self.dig_H = array.array('h', [0, 0, 0, 0, 0, 0])
        self.dig_H[0] = i2c.readfrom(self.addr, 1)[0]
        i2c.writeto(self.addr, b'\xE1', False)
        buff = i2c.readfrom(self.addr, 7)
        self.dig_H[1] = ustruct.unpack('h', buff[0:2])[0]
        self.dig_H[2] = buff[2]
        self.dig_H[3] = (buff[3] << 4) | (buff[4] & 0x0F)
        self.dig_H[4] = (buff[5] << 4) | (buff[4] >> 4 & 0x0F)
        self.dig_H[5] = buff[6]

    def temperature(self):
        retry = 0
        if (retry < 5):
            try:
                i2c.writeto(self.addr, b'\xFA', False)
                buff = i2c.readfrom(self.addr, 3)
                T = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F)
                c1 = (T / 16384.0 - self.dig_T[0] / 1024.0) * self.dig_T[1]
                c2 = ((T / 131072.0 - self.dig_T[0] / 8192.0) * (T / 131072.0 - self.dig_T[0] / 8192.0)) * self.dig_T[2]
                self.tFine = c1 + c2
                return self.tFine / 5120.0
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def pressure(self):
        retry = 0
        if (retry < 5):
            try:
                i2c.writeto(self.addr, b'\xF7', False)
                buff = i2c.readfrom(self.addr, 3)
                P = (((buff[0] << 8) | buff[1]) << 4) | (buff[2] >> 4 & 0x0F)
                c1 = self.tFine / 2.0 - 64000.0
                c2 = c1 * c1 * self.dig_P[5] / 32768.0
                c2 = c2 + c1 * self.dig_P[4] * 2.0
                c2 = c2 / 4.0 + self.dig_P[3] * 65536.0
                c1 = (self.dig_P[2] * c1 * c1 / 524288.0 + self.dig_P[1] * c1) / 524288.0
                c1 = (1.0 + c1 / 32768.0) * self.dig_P[0]
                if c1 == 0.0:
                    return 0
                p = 1048576.0 - P
                p = (p - c2 / 4096.0) * 6250.0 / c1
                c1 = self.dig_P[8] * p * p / 2147483648.0
                c2 = p * self.dig_P[7] / 32768.0
                p = p + (c1 + c2 + self.dig_P[6]) / 16.0
                return p
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

    def humidity(self):
        retry = 0
        if (retry < 5):
            try:
                self.temperature()
                i2c.writeto(self.addr, b'\xFD', False)
                buff = i2c.readfrom(self.addr, 2)
                H = buff[0] << 8 | buff[1]
                h = self.tFine - 76800.0
                h = (H - (self.dig_H[3] * 64.0 + self.dig_H[4] / 16384.0 * h)) * \
                    (self.dig_H[1] / 65536.0 * (1.0 + self.dig_H[5] / 67108864.0 * h * \
                    (1.0 + self.dig_H[2] / 67108864.0 * h)))
                h = h * (1.0 - self.dig_H[0] * h / 524288.0)
                if h > 100.0:
                    return 100.0
                elif h < 0.0:
                    return 0.0
                else:
                    return h
            except:
                retry = retry + 1
        else:
            raise Exception("i2c read/write error!")

# bm280
if 119 in i2c.scan():
    bme280 = BME280()

class PinMode(object):
    IN = 1
    OUT = 2
    PWM = 3
    ANALOG = 4
    OUT_DRAIN = 5


pins_remap_esp32 = (33, 32, 35, 34, 39, 0, 16, 17, 26, 25, 36, 2, -1, 18, 19, 21, 5, -1, -1, 22, 23, -1, -1, 27, 14, 12,
                    13, 15, 4)


class MPythonPin():
    def __init__(self, pin, mode=PinMode.IN, pull=None):
        if mode not in [PinMode.IN, PinMode.OUT, PinMode.PWM, PinMode.ANALOG, PinMode.OUT_DRAIN]:
            raise TypeError("mode must be 'IN, OUT, PWM, ANALOG,OUT_DRAIN'")
        if pin == 4:
            raise TypeError("P4 is used for light sensor")
        if pin == 10:
            raise TypeError("P10 is used for sound sensor")
        try:
            self.id = pins_remap_esp32[pin]
        except IndexError:
            raise IndexError("Out of Pin range")
        if mode == PinMode.IN:
            if pin in [3]:
                raise TypeError('IN not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.IN, pull)
        if mode == PinMode.OUT:
            if pin in [2, 3]:
                raise TypeError('OUT not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.OUT, pull)
        if mode == PinMode.OUT_DRAIN:
            if pin in [2, 3]:
                raise TypeError('OUT_DRAIN not supported on P%d' % pin)
            self.Pin = Pin(self.id, Pin.OPEN_DRAIN, pull)
        if mode == PinMode.PWM:
            if pin not in [0, 1, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 19, 20, 23, 24, 25, 26, 27, 28]:
                raise TypeError('PWM not supported on P%d' % pin)
            self.pwm = PWM(Pin(self.id), duty=0)
        if mode == PinMode.ANALOG:
            if pin not in [0, 1, 2, 3, 4, 10]:
                raise TypeError('ANALOG not supported on P%d' % pin)
            self.adc = ADC(Pin(self.id))
            self.adc.atten(ADC.ATTN_11DB)
        self.mode = mode

    def irq(self, handler=None, trigger=Pin.IRQ_RISING):
        if not self.mode == PinMode.IN:
            raise TypeError('the pin is not in IN mode')
        return self.Pin.irq(handler, trigger)

    def read_digital(self):
        if not self.mode == PinMode.IN:
            raise TypeError('the pin is not in IN mode')
        return self.Pin.value()

    def write_digital(self, value):
        if self.mode not in [PinMode.OUT, PinMode.OUT_DRAIN]:
            raise TypeError('the pin is not in OUT or OUT_DRAIN mode')
        self.Pin.value(value)

    def read_analog(self):
        if not self.mode == PinMode.ANALOG:
            raise TypeError('the pin is not in ANALOG mode')
        # calibration esp32 ADC 
        calibration_val = 0
        val = int(sum([self.adc.read() for i in range(50)]) / 50)
        if 0 < val <= 2855:
            calibration_val = 1.023 * val + 183.6
        if 2855 < val <= 3720:
            calibration_val = 0.9769 * val + 181
        if 3720 < val <= 4095:
            calibration_val = 4095 - (4095 - val) * 0.2
        return calibration_val

    def write_analog(self, duty, freq=1000):
        if not self.mode == PinMode.PWM:
            raise TypeError('the pin is not in PWM mode')
        self.pwm.freq(freq)
        self.pwm.duty(duty)


'''
# to be test
class LightSensor(ADC):
    
    def __init__(self):
        super().__init__(Pin(pins_remap_esp32[4]))
        # super().atten(ADC.ATTN_11DB)
    
    def value(self):
        # lux * k * Rc = N * 3.9/ 4096
        # k = 0.0011mA/Lux
        # lux = N * 3.9/ 4096 / Rc / k
        return super().read() * 1.1 / 4095 / 6.81 / 0.011
    
'''


class wifi:
    def __init__(self):
        self.sta = network.WLAN(network.STA_IF)
        self.ap = network.WLAN(network.AP_IF)

    def connectWiFi(self, ssid, passwd, timeout=10):
        if self.sta.isconnected():
            self.sta.disconnect()
        self.sta.active(True)
        list = self.sta.scan()
        for i, wifi_info in enumerate(list):
            try:
                if wifi_info[0].decode() == ssid:
                    self.sta.connect(ssid, passwd)
                    wifi_dbm = wifi_info[3]
                    break
            except UnicodeError:
                self.sta.connect(ssid, passwd)
                wifi_dbm = '?'
                break
            if i == len(list) - 1:
                raise OSError("SSID invalid / failed to scan this wifi")
        start = time.time()
        print("Connection WiFi", end="")
        while (self.sta.ifconfig()[0] == '0.0.0.0'):
            if time.ticks_diff(time.time(), start) > timeout:
                print("")
                raise OSError("Timeout!,check your wifi password and keep your network unblocked")
            print(".", end="")
            time.sleep_ms(500)
        print("")
        print('WiFi(%s,%sdBm) Connection Successful, Config:%s' % (ssid, str(wifi_dbm), str(self.sta.ifconfig())))

    def disconnectWiFi(self):
        if self.sta.isconnected():
            self.sta.disconnect()
        self.sta.active(False)
        print('disconnect WiFi...')

    def enable_APWiFi(self, essid, password=b'',channel=10):
        self.ap.active(True)
        if password:
            authmode=4
        else:
            authmode=0
        self.ap.config(essid=essid,password=password,authmode=authmode, channel=channel)

    def disable_APWiFi(self):
        self.ap.active(False)
        print('disable AP WiFi...')


# 3 rgb leds
rgb = NeoPixel(Pin(17, Pin.OUT), 3, 3, 1, brightness=0.3)
rgb.write()

# light sensor
light = ADC(Pin(39))
light.atten(light.ATTN_11DB)

# sound sensor
sound = ADC(Pin(36))
sound.atten(sound.ATTN_11DB)

# buttons
button_a = Pin(0, Pin.IN, Pin.PULL_UP)
button_b = Pin(2, Pin.IN, Pin.PULL_UP)

# touchpad
touchPad_P = TouchPad(Pin(27))
touchPad_Y = TouchPad(Pin(14))
touchPad_T = TouchPad(Pin(12))
touchPad_H = TouchPad(Pin(13))
touchPad_O = TouchPad(Pin(15))
touchPad_N = TouchPad(Pin(4))

from gui import *


def numberMap(inputNum, bMin, bMax, cMin, cMax):
    outputNum = 0
    outputNum = ((cMax - cMin) / (bMax - bMin)) * (inputNum - bMin) + cMin
    return outputNum